

Envisioning Water at the Installation of the Future

May 2, 2023, 2:30 p.m.

samejetc.org 🚦 @SAMENational 🎔 @SAME_National | #SAMEJETC23 🛅 "Society of American Military Engineers"

Thank You to our Education Session Sponsors!

Alliance

Alliance Consulting Group

SAME samejetc.org 🖪 @SAMENational 🎽 @SAME_National | #SAMEJETC23 🛅 "Society of American Military Engineers"

Envisioning Water at the Installation of the Future

Moderator: Noah Garfinkle, Civil Engineer, US Army Engineer Research and Development Center

Speakers:

- Kate Stoughton, Technical Advisor, Pacific Northwest National Laboratory
- Kylie Burkett, Civil Engineer, US Army Engineer Research and Development Center
- Juan Gomez, Mechanical Engineer, US Army Engineer Research and Development Center

Noah Garfinkle

Fun Facts

Infrastructure resilience researcher and chief of ERDC's WURST Research and Development Program (Water Use, Resilience, Security, and Technology)

- Kansas City sports fan (Chiefs, Royals, KU Jayhawks)
- Part-time PhD student at the University of Illinois

samejetc.org 🛐 @SAMENational 🔰 @SAME_National | #SAMEJETC23 🛅 "Society of American Military Engineers"

2023

San Antonio

SAME

Kate Stoughton

Fun Facts

- Joined Pacific Northwest National Laboratory in 1993
- Works remotely since 1999
- Hobbies include gardening, hiking, and traveling

samejetc.org 🖪 @SAMENational 🈏 @SAME_National | #SAMEJETC23 🛅 "Society of American Military Engineers"

Kylie Burkett

Fun Facts

Research Civil Engineer WURST Research and Development Program

- Bachelor's and Master's Degree in Civil Engineering from the University of Illinois at Urbana-Champaign
- Favorite sport is Rugby
- I enjoy... reading, traveling, and listening to podcasts

Juan Gomez

Fun Facts

Research Mechanical Engineer WURST Research and Development Program

- Bachelors in Aerospace Engineering
- Hobbies: Microgreen Growing and Video Games

samejetc.org 🛐 @SAMENational 🔰 @SAME_National | #SAMEJETC23 🛅 "Society of American Military Engineers"

ENVISIONING WATER AT THE INSTALLATION OF THE FUTURE

TRATING PLOOP EL 491.00

NUMPER OF

US Army Corps of Engineers

U.S. ARMY

INDEXTREMENDED OCNOTIETE

U.S. DEPARTMENT OF

Pacific

Northwest

WHY SHOULD THE INSTALLATION OF THE FUTURE USLARMY CARE ABOUT WATER?

Every installation mission depends on water.

Getting the right amount of water to the right place, at the right quality, takes a lot of infrastructure.

Ensuring installations have enough water does not fit neatly with existing mission assurance constructs.

WHY SHOULD THE INSTALLATION OF THE <u>FUTURE</u> USLARMY CARE ABOUT WATER? <u>MISSION</u>

How we fight

What we fight with

Who we are

WHY SHOULD THE INSTALLATION OF THE FUTURE **CARE ABOUT WATER? OPERATING ENVIRONMENT**

WHY SHOULD THE INSTALLATION OF THE FUTURE CARE ABOUT WATER? POLICY

FY21 NDAA Section 2827

Requirements (e) Implementation

(1) REPORT REQUIRED.—Not later than one year after the date of the enactment of this Act, the Secretary of Defense, in coordination with the other Secretaries concerned, shall submit to the Committees on Armed Services of the Senate and the House of Representatives a report on the progress made in implementing this section.

(2) REPORT ELEMENTS — The report shall include the following:

(A) The methodology developed under subsection (b) to conduct water management and security assessments.
(B) A list of the military installations that have been assessed using such methodology and a description of the findings.
(C) A list of planned assessments for the one-year period beginning on the date of the submission of the report.
(D) An evaluation of the progress made on implementation of

xeriscaping and other regionally appropriate landscaping practices at military installations. (a) RISK BASED APPROACH TO INSTALLATION WATER MANAGEMENT AND SECURITY. (1) GENERAL REQUIREMENT. — The Secretary concerned shall adopt a risk based approach to water management and security for each military installation under the jurisdiction of the Secretary.

(2) IMPLEMENTATION PRIORITIES.—The Secretary concerned shall begin implementation of paragraph (1) by prioritizing those military installabors under the jurisdiction of the Secretary that the Secretary determine—

(A) one experiencing the greatest risks to sustainable water management and security and (B) face the most severe existing or potential adverse impacts to mission assurance as a result of such risks.

(3) DETERMINATION METHOD.—Oeterminations under paragraph (2) shall be made on the basis of the water management and security assessments made by the Secretary concerned under subsection (b).

(b) WATER MANAGEMENT AND SECURITY ASSESSMENTS .--

 (1) ASSESSMENT METHODOLOGY.—The Secretaries concerned, acting jointly, shall develop a methodology to assess risks to sustainable water management and security and mission assurance.
 (2) ELEMENTS.—Required elements of the assessment methodology shall include the

following: (A) An evaluation of the water sources and supply connections for a military installation.

(a) An evaluation of the age, condition, and jurisdictional control of water intrastructure serving
 (B) An evaluation of the age, condition, and jurisdictional control of water intrastructure serving

the military installation. (C) An evaluation of the military installation's water security risks related to drought-prone

climates, impacts of defense water usage on regional water demands, water quality, and egal issues, such as water rights disputes.

(D) An evaluation of the restilency of the mittary installation's water supply and the overall health of the aquifer basin of which the water supply is a part, including the robustness of the resource, redundancy, and ability to recover from disruption.
(E) An evaluation of existing water metering and consumption at the military installation.

(i) by type of installation activity, such as training.

(i) by goe one, model bounds, bounds and grounds maintenance and landscaping; and
 (ii) by fluctuations in consumption, including peak consumption by quarter

Water Banking to Support Installation Resiliency

Water Banking to Support Installation Resiliency

The committee is concerned about the threat of drought and water insecurity, particularly for military installations in the western United States that are wholly or in part west of the Continental Divide. The committee contends that resiliency planning, particularly installation resiliency master planning, must be a key priority for the military departments to ensure that wise investments are made to ensure efficient management and storage of this resource and to model future requirements. Accordingly, the committee directs the Secretary of Defense to submit a report to the House Committee on Armed Services not later than April 1, 2022, that shall at a minimum contain the following:

 (1) the results of a survey of water resources in the western United States providing water to military installations;

(2) the amount of water purchased on behalf of military installations in the western United States by the Department annually;

(3) a description of how <u>such water (total)</u> is stored and by what means (surface, subsurface, or by other means) by military installations;

(4) the amount of such purchased water that is stored as emergency reserve for the installation;

(5) risk factors that could contribute to the loss of such purchased water resources;

(6) a discussion of alternative storage methods that could provide additional resiliency; and

(7) the potential for regional transfers of purchased water to mitigate water insecurity or achieve resiliency.

Do you know what percent of water on earth is available for human consumption?

a) 50%
b) 20%
c) 1%
d) 10%
e) 80%

SAME

WATER IS A <u>SCARCE</u> RESOURCE

OF EARTH'S WATER AVAILABLE TO US FOR OUR DAILY WATER SUPPLY NEEDS

U.S. ARMY

Fresh-water lakes and rivers

Howard Parlman, USGS, Jack Cook, Wooda Hole Oceanographic Institution, Adam Nieman Data source: Igor Shiklomanov http://ga.water.usgs.gov/edu/earthhowmuch.html

CLIMATE CHANGE IMPACTS WATER SOURCES AND AVAILABILITY

Data sources: WestWide Drought Tracker, 2021;¹⁰ PRISM, 2021¹¹ Web update: April 2021

CLIMATE CHANGE IMPACTS WATER SOURCES AND AVAILABILITY

No Data

CLIMATE CHANGE IMPACTS WATER SOURCES AND AVAILABILITY

FORT BRAGG, NC, UNITED STATES Photos by Andrea Salgado Rivera

WATER SOURCES AND AVAILABILITY IMPACT OTHER SECTORS

MITIGATION AND ADAPTATION

MITIGATION IS ABOUT ENERGY

ADAPTATION IS ABOUT WATER

<u>GOOD</u> WATER MANAGEMENT INCREASES RESILIENCE, SECURITY, AND OUR ABILITY TO ADAPT

Soldiers

Operations

Heating & Cooling

Billion Gallons

Families

Land Management

Buildings

HOW DOES THE ARMY MANAGE WATER?

Fort Greely Installation Energy and Water Plan

29

HOW DOES THE ARMY MANAGE WATER?

U.S. ARMY

H.R.6395-949

SEC. 2827. IMPROVING WATER MANAGEMENT AND SECURITY ON MILI-TARY INSTALLATIONS.

(a) RISK-BASED APPROACH TO INSTALLATION WATER MANAGEMENT AND SECURITY.—

	Installation X	Installation Y	Installation Z
Current Water Competition Indicator	Low	Low	Low
Future Water Competition Indicator	Sig.	Low	High
Water Competition Category	Mod.	Low	Sig.
Water Use Intensity Indicator	Sig.	Low	High
Water Use	Mod.	Mod.	Sig.
Fluctuations in Water Use	Low	Low	Mod.
Water Metering	Sig.	Sig.	High
Infrastructure	Mod.	Low	Mod.
Preparedness	High	Low	High
Response to Water Shortage	High	Mod.	Sig.
Water Rights Documentation	Low	Mod.	Low
Potable Water Quality	High	Low	Low
Water Quality	High	Low	Low
OVERALL RISK SCORE	Sig.	Low	Mod.

This is an example with fake indicators and installations (X, Y, Z) to portray what a water management resilience assessment based on risk factors may look like

SECRETARY OF THE ARMY WASHINGTON

1 2 MAY 2014

MEMORANDUM FOR SEE DISTRIBUTION

SUBJECT: Army Directive 2014-08 (Water Rights Policy for Army Installations in the United States)

 Reference Memorandum, Assistant Secretary of the Army (Installations, Logistics and Environment), 24 Nov 95, subject: Policy Guidance on Water Rights at Army Installations in the United States.

2. Purpose. The Army requires enough water to carry out its missions without significant disruptions. This directive, which supersedes the reference, sets policy and assigns responsibilities for identifying, asserting and preserving the Army's water rights.

UNDERSTANDING THE VARIOUS USES AND IMPACTS ON WATER US.ARMY IS VITAL FOR MANAGEMENT AND CONSERVATION

OF EARTH'S TOTAL WATER AVAILABLE FOR HUMANS BGAL OF WATER USED BY ARMY IN FY22

ENERGY STATUTORY DRIVERS FOR FACILITY WATER MANAGEMENT

Water efficient procurement

Water efficiency measure implementation

Energy Independence & Security Act 2007

Energy Act

2005

- **Comprehensive Energy and Water Evaluations**
- Sustainable design
- Stormwater management

Energy Act 2020

- Water metering
- Use of performance contracts
- Energy manager must manage water
- Commissioning of water equipment

ENERGY EXECUTIVE ORDER 14057

Agency Water Efficiency Requirement:

 Potable Water Use Intensity (WUI) Target: Each agency shall establish an FY2030 agencywide potable WUI target (measured in gallons per square foot per year)

Other Requirements:

- Sustainable Procurement: Purchase sustainable products identified by the Environmental Protection Agency
- Net zero water: Agencies must ensure all new construction over 25,000 sqft are designed to meet net zero water where feasible
- Performance Contracting: Agencies are to use performance contracting to audit buildings and implement energy and water efficiency measures

Implementing Instructions: https://www.sustainability.gov/pdfs/EO_14057_Implementing_Instructions.pdf

ENERGY ARMY'S WATER USE - PRESENT AND FUTURE

Army Potable Water Use Intensity (WUI) - gallons per square foot

- 70 60 50 40 30 20 10 0 Eto1 = 10° =
- Army FY22 potable water use: 30.4 Bgal
- Army reduced WUI by 29% in FY22 compared to FY07
- FY30 WUI target will be released soon

Army's WUI has flattened

ENERGY HOW WILL THE ARMY MEET THE WUI TARGET?

- Meter buildings for water, prioritizing water intensive buildings
- Assign and train energy managers to manage water
- Conduct comprehensive water evaluations for water efficiency
- Implement life cycle cost (LCC) effective water saving measures
- Use performance contracts to implement water saving measures
- Procure water-efficient equipment
- Commission equipment and measure and verify savings
- Construct new buildings that meet the Guiding Principles

ENERGY COMPREHENSIVE WATER EVALUATIONS

ENERGY WATER BALANCE EXAMPLE

- A water balance compares the total water supplied to the sum of water end-uses
- Benefits of a water balance
 - Reveals the largest water end-uses
 - Helps prioritize water efficiency improvements
 - Uncovers potential operational and maintenance issues
 - Helps to indicate losses in the system to target potential infrastructure improvement projects

ENERGY EFFICIENCY ASSESSMENT

Control box full of water

Broken/ leaking sprinkler heads

Irrigating during rain

ENERGY OUTCOME OF EFFICIENCY ASSESSMENT

42

Pacific

ARMY METERING DATA MANAGEMENT SYSTEM (MDMS)

What is the definition of alternative water?

a) Sources not from freshwater supply (groundwater & surface water)
b) Groundwater (i.e. well water)
c) Non-potable water
d) I don't know!

ENERGY ALTERNATIVE WATER

Alternative water offsets freshwater use:

- Harvested Rainwater
- Reclaimed Wastewater
- Condensate Capture
- Process Reuse

45

Pacific Northwes

Fort Buchanan Potable Rainwater Harvesting

Camp Rilea Indirect Potable Reuse

Fort Carson Reclaimed Wastewater

FUTURE WATER SYSTEMS

Function & Technology

ALTERNATIVE WATER SOURCES

Used Currently

- Rainwater Harvesting
- Reclaimed Wastewater • Greywater
- Stormwater Capture
- Captured Condensate
- esearching • Indirect Potable Reuse • Direct Potable Reuse N
 - Desalination
- Atmospheric Solutions Water Generation • Discharged Water from Purification ossible Process • Foundation Water
 - Blowdown Water

ALTERNATIVE WATER SOURCES

WATER MICROGRIDS

An on-site water supply providing backup storage, treatment, and distribution

Characteristics

- Backup Power
- Advanced Monitoring and Controls
- Self-sufficient
- Automated

Benefits

- Fulfill mission critical demand during emergency
- Improved water resilience for high-risk areas and installations
- Independent operation

WATER MICROGRIDS - USE CASES

Camp Rilea

Self contained, automated water system that supplies, treats, stores and distributes all onsite

Camp Swift

Smart Water Grid Project. Prompted by Winter Storm Uri, the water system is meant to maintain operability during disruption to main water supply

What percentage of the nation's energy consumption is used by drinking water and wastewater systems?

a) 2%
b) 4%
c) 12%
d) 1%
e) 6%

SAME

MAINTAINING WATER QUALITY

Methods

NETWORK COUPLED MODELLING

57

DIGITAL TWINS

58

Noah Garfinkle, Noah.W.Garfinkle@erdc.dren.mi Kate Stoughton, Kate.Stoughton@pnnl.gov Kylie Burkett, Kylie.R.Burkett@erdc.dren.mil Juan Gomez, Juan.C.Gomez@erdc.dren.mil Thank you! 7000 €6000 ≚́5000 ∽́ 4000 g 3000 R 2000 ₹ 1000 DRIVERS WATER USE **FUTURE** WATER SOURCES WATER & **EFFICIENCY SYSTEMS**

U.S. DEPARTMENT OF

US Army Corps of Engineers

U.S. ARMY

Pacific

NOTE: TARTER GATE NOT SHOWN

13, 313, 50

- Kate Stoughton, kate.stoughton@pnnl.gov
- Noah Garfinkle, noah.w.garfinkle@usace.army.mil
- Kylie Burkett, kylie.r.burkett@usace.army.mil
- Juan Gomez, juan.c.gomez@usace.army.mil

THANK YOU

Please take a few minutes to complete a short survey about this session. Your feedback will help us improve future programming for JETC.